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Abstract 

Multiplicative Random Cascade (RC) method is a stochastic tool to model a fine resolution precipitation data, which is 
based on assumption that the precipitation structure is Multifractal. The random process involved within it, which often 
causes the results either to differ largely in between repeated trials or to differ from a measured one, dominates existing 
RC method. This weakness is necessary to remove before adopting the method as a reliable tool of modeling the fine 
resolution precipitation field. Noticing that the spatial rainfall field contains spatial correlation, we attempted to include 
this information in a RC method. First, we evaluate a reference matrix, which accounts for the spatial correlation effect 
of a coarse precipitation field and the distance from the nearest point of coarse grid to the center of a grid at the fine 
resolution. Then, this reference matrix assists to find the location of a cascade generator by comparing the hierarchical 
order. It also assists to re-allocate the statistically filtered peak values to a proper location. This method, named as 
Multiplicative Random Cascade with Hierarchical and Statistical Adjustment (RCHSA) method, was used to model the 
fine resolution precipitation data (10-arc minute resolution) using GAME Reanalysis 1.25 degree data as the input. 
Comparing the spatial patterns of over 40,000 test outputs from the RCHSA method against the spatial patterns of the 
HUBEX-IOP-EEWB data, it revealed that the RCHSA method was largely successful to remove the weakness of the 
RC method. The overall performance was improved to 0.6 from 0.34 after including the HSA method. This has helped 
us to use the GAME 1.25 degree data product in hydrological simulations of catchments as small as of 2000 sq. km. 
scale successfully. 
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1. Introduction 
Precipitation data are the important binding forcing to 

understand space time variability of meteorological and 
hydrological conditions, and to drive small to large-scale 
and short to long-term simulations in both sectors. 
GAME Re-analysis project, started in 1999 in Japan with 
a joint effort of Meteorological Research Institute 
Numerical Prediction Division / Japan Meteorological 
Agency and Earth Observation Research Center, had 
aimed to obtain higher quality data using the most 
updated assimilation system, the 4DDA, and the off-line 
data collected during GAME-IOP period. This project 
released the GAME re-analysis data in September, 2000. 
Before the release, it conducted the case study of heavy 
precipitation in the Yangtze River in addition to 
comparison of the re-analyzed data with ECMWF and 
NCEP products (Yamazaki et al., 2000). This is an 
example of use of the precipitation data `to evaluate the 
performance of a numerical model in meteorological data 
acquisition system. 

Three different sets of the GAME re-analysis product 
were released in its version 1.1 package having different 
horizontal resolutions, 2.5-degree, 1.25-degree and 
0.5-degree including 3-dimensional analyzed fields and 
two dimensional forecasted fields. The data have covered 
the summer of 1998. The effort of releasing 
multi-resolution data product was appreciable realizing 
the fact that what we observe at a scale does not 
necessarily be true at another scale, though there 
remained an unanswered question “how many different 
resolutions are to release?” Provided a finer resolution 
data, there is comparatively little trouble in getting a 
coarser resolution data which have averaged intensity in 
a wider region and smoother spatial pattern. But to 

obtain a finer resolution data, in terms of the 
precipitation data, from a coarser resolution data is a 
challenging task as it needs to describe the sub-grid scale 
variability, particularly in the subtropical and temperate 
monsoon regions of East Asia, where the energy and 
water cycle is characterized largely by the Baiu front in 
summer. Various scales of cloud/precipitation systems 
associated with the complex processes between air and 
land-surface are formed in this frontal zone and they play 
a major role in this region making it hard to describe the 
sub-grid scale variability.  

Attempts to obtain a sub-grid scale spatial variability 
of the precipitation are headed toward two major 
directions. The first direction is mainly developed in 
meteorology literature describing the atmospheric 
dynamics and thermodynamics. There are some practical 
difficulties to obtain finer resolution outputs over long 
timescale due to complexities of nesting boundary 
conditions, unknown parameterization for convective 
precipitation, and multiscale variability of deep 
convection through this direction (Giorgi and Mearns, 
1991; Houze, 1997; Chen et al., 1996). Also, there are 
many unknowns in describing the microphysics of the 
intermittent precipitation mechanism in finer resolution. 
The second direction is mainly developed in hydrology 
literature that leads to the description of spatial 
organization of the precipitation in terms of intensity at 
multiple scales.  In this discipline, the recognition of the 
hidden sub-grid scale features from the coarse fuzzy 
information has become a major key to disaggregate the 
precipitation data into finer resolution using probabilistic 
models of space-time rainfall. 

The second approach is based on the scaling 
invariance features of observed spatial rainfall fields 



(Schertzer and Lovejoy, 1987; Lovejoy and Schertzer, 
1990; Gupta and Waymire, 1990) with extreme 
variability and strong intermittence (Georgakakos and 
Krajewski, 1996), which has yielded a multiplicative 
random cascade theory (Lovejoy and Schertzer, 1990; 
Gupta and Waymire, 1993). Due to the scaling invariance 
or self-similarity concept in this approach of space-time 
rainfall modeling, the parameterization is parsimonious 
and valid over a wide range of scales (Lovejoy and 
Schertzer, 1990; Gupta and Waymire, 1993; Over and 
Gupta, 1994; Foufoula-Georgiou and Krajewski, 1995; 
Olsson, 1996).  

The objective to obtain further finer resolution 
precipitation data than that of the currently available one 
has multi-purpose attraction either in research or in 
application studies. In this study, we present the results 
of out attempt to model the fine resolution precipitation 
data using the GAME 1.25-degree two-dimensional 
forecast field. We compare the outcome of the model 
with the spatial patterns of HUBEX IOP EEWB data 
(Kozan et al. 2001 

 
2. Description of the model 

A multiplicative cascade treatment based on the 
statistical theory of turbulence (Mandelbrot, 1974) offers 
a concrete way of modeling these fields (Schertzer and 
Lovejoy, 1987) as the kinetic energy transfer is seen in 
the cascade of turbulent eddies from a large energy scale 
to smaller dissipation scales. Similarly, in the cascades of 
precipitation modeling, an area of higher intensity 
precipitation is embedded in larger areas of lower 
intensity precipitation, which are again a part of even 
larger areas but of even lower intensity. This can be 
described either in continuous or in discrete form of 
multiplicative cascades. Debates are ongoing on 
suitability of approaches to form the multiplicative 
random cascade whether the continuous or discrete. The 
continuous form of multiplicative random cascades has 
the major advantage of developing cascades over a 
continuous interval of scales instead of only a discrete set 
(Marsan et al., 1996); however, the discrete form of 
multiplicative random cascade has ability to separate 
rainy and non-rainy area (Gupta and Waymire, 1993; 
Over and Gupta, 1994) and can be adopted to respect the 
discrete sub catchment partitioning of the landscape by 
the drainage network of a catchment (Gupta et al., 1996; 
Over and Gupta, 1996). We choose here a discrete 
multiplicative random cascade method, so called the beta 
lognormal model developed by Over and Gupta (1994, 
1996) and apply a method to improve the shortcoming of 
the model. This is called as the multiplicative random 
cascade HSA method (Shrestha et al., 2004) 

 
2.1. The beta lognormal model 

In the beta lognormal model, the cascade construction 
process successively divides a two-dimensional region 
into equal parts at each step, and during each subdivision 
(say n = 2) the mass (or volume) of rainfall over the 
region obtained at the previous step (n = 1) is distributed 
into the b subdivisions (for the case of d = 2; b = 4) by 
multiplying by a set of “cascade generators” W, as shown 
schematically in Figure 1.  

For an area at level 0, denoted by 0
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length scale of 0L  and average precipitation intensity 
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Fig. 1: Schematic of cascade branching 
 
The cascade generators W are non-negative random 

values with E[W] = 1, which is imposed to ensure the 
mass conservation from one discretization level to the 
next (see Over and Gupta, 1996). To get the cascade 
generator W values, Over and Gupta (1994, 1996) has 
proposed a model called beta-lognormal model such that 

 BYW =    (2) 
Here, B is a generator from the “beta model” that 

separates the rainy and non-rainy zone on the basis of 
discrete probability mass function and Y is obtained from 
lognormal distribution (Gupta and Waymire, 1993) in the 

form of 
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This model consists of only two parameters, 

β and 2σ . The parameter estimation method is proposed 
by Over and Gupta (1994, 1996) by using the 
Mandelbrot-Kahane-Peyriere (MKP) function, named 



after Madelbrot (1874) and Kahane and Pyeriere (1976), 
which characterizes the fractal or scale-invariant 
behavior of the multiplicative cascade process.   

This method is largely dependent on the spatial 
structure of generators, which is a random process within 
this method. The random nature of the generators often 
causes the results either to differ largely in between 
repeated trials or to differ from a real one. To remove the 
weakness, the following method has been employed in 
this study. 

 
2.2. The HSA method 

In smaller spatial scale, the precipitation fields have 
strong spatial correlation. This phenomenon was 
appeared in the GAME 1.25 degree precipitation data too, 
although the data is of coarse resolution. Figure 2 shows 
the spatial correlation of the precipitation data. 

 

 
Fig. 2: Spatial Correlation of the precipitation data 
 
The spatial correlation gradually decreases upon 

increase of distance. The decaying shape of the spatial 
correlation function may be represented by a logarithmic 
function (equation 8). This is given by 
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where, Z is distance in kilometers; Zρ is the spatial 

correlation value at Z; 0Z is the threshold beyond which 
the spatial correlation remains zero by the use of the 
logarithmic spatial correlation function withα , κ  and 
λ  parameters. 

In the process of cascading down of a two dimensional 
(d = 2) spatial field, the nb  numbers of sub-areas, 
named as, (i = 1, 2, ..., nb ) are obtained at the nth level 

with the grid dimension 0L /
nd . For each of these 

sub-areas, a spatial correlation reference index H is 
evaluated, which works as a spatial guide matrix. The 
reference index H is influenced by the average rain 
intensities Rm of the surrounding eight coarse scale grids 
(m = 1, 2, …, 8) and corresponding distances of the 
sub-area from the referred neighbor grid m

nZ . For nth 
level, the reference index H can be represented as,  
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where, jk

nH is the non-negative reference index at nth 
level for jkth sub-area; Rm is the rainfall of mth neighbor 
cell; m

nZρ is the spatial correlation with the mth neighbor 

viewed from jkth location at nth level, from where the 
distance up to the mth neighbor becomes m

nZ . For the 

sub-area, the jx  and jy  represents the central point 
of the sub-area.  

The multiplicative random cascade HSA method 
assigns the i

nW values by preserving the spatial 
correlation structure of the precipitation field such that, 

 [ ] BYW =•  (12) 
where, [ ]•W  represents the W with its spatial 

address [ ]• . The reference index jk
nH  is used to obtain 

the spatial address [ ]•  using its two dimensional spatial 
reference j and k inside the sub-dividing region. 

At every additional level (n+1), four more random 
cascade generators, '

1
i

nW +  (i' = bn+1-3, bn+1-2, bn+1-1, 
bn+1) appear for newly disaggregated sub-area 

'
1

i
n+∆ from i

n∆ , (i = nb ). Their spatial address [ ]•  is 
determined on the basis of comparison between the 
reference indexes ''

1
kj

nH + and the random cascade 

generators '
1

i
nW + . The '

1
i

nW +  may need to reshuffle its 

location within '
1

i
n+∆   in order to attain same hierarchy 

of ''
1
kj

nH +  locations. This process includes a spatial 
correlation structure into the cascade generators in 
successive progress of disaggregation.  

The spatial nH  field is a smooth gradient surface 
and its shape is based on the surrounding coarse grid 
average rainfall. The lowest and highest zones of the nH  
field are most possibly the non-rainy and rainy zones 
respectively. If the peak rainy cells of the ( )nn ∆µ  field 

are not in accordance with the rainy zones of nH  field 
and vice versa, a statistical filter is applied to improve it. 
Though these extreme high and low value cell numbers 
may not be significant to influence spatial statistics, they 
might have practical significance. Therefore at the nth 
level, spatial locations of the extreme ( )nn ∆µ  values 

are re-adjusted following hierarchical order of nH  
field after statistical separation of extreme high and low 
values from both fields.  The statistical adjustment is 
omitted if the correlation of nH  field and ( )nn ∆µ  
field is found higher than a target correlation, which is 
adapted 80% arbitrarily in this case. 



 
(a) GAME 1.25-degree data 

 
(b) Fine resolution data obtained by the model 

 
(c) HUBEX-IOP EEWB data 

 
Fig. 3: Spatial patterns of the precipitation data obtained 
from a) GAME 1.25-degree precipitation data; b) output of 
the modeling of fine resolution precipitation data using the 
GAME data; and c) HUBEX-IOP EEWB precipitation 
data used to compare the result of the model 
 

3. Results and Discussion 
The experiment was successful to produce a fine 

resolution precipitation data. Figure 3 shows a typical 
result of this kind. Figure 3a is the GAME 1.25-degree 
data and Figure 3b is the 10-minute resolution 
precipitation data. The results were compared with the 
spatial patterns of the precipitation data collected by the 
HUBEX-IOP during the same period (Figure 3c). 
Comparison of the spatial patterns shows good match in 
between the two precipitation data sets. In another test 
without the HSA method, so-called as the RC method, 
the fine resolution precipitation data were found having 
very different spatial pattern from that of the 
HUBEX-IOP EEWB data. While the performance of the 
RC method yielded 0.34 in the test of spatial covariance 
between the HUBEX-IOP EEWB data and the modeled 
fine resolution data using the RC method, the RCHSA 
method, as described in this study, yielded 0.6. This 
confirms the improved ability of modeling fine 
resolution data using the GAME 1.25-degree product. 

The modeled fine resolution precipitation data may not 
necessarily represent a true precipitation pattern even 
though it perfectly match with the HUBEX-IOP EEWB 
data because there could be uncertainty within the 
HUBEX-IOP EEWB data itself. Their ground based 
observation data, however, provides the most detailed 
spatial structure of the precipitation data in the study 
region. We foresee the possibility of using the modeled 
data in hydrological simulation of smaller catchments, 
much smaller than the size of a grid-cell that the GAME 
1.25-degree data have, if the modeled fine resolution 
data can generate similar data as that of the observed one. 
The HUBEX-IOP EEWB precipitation data provides a 
smooth spatial pattern, which is the obvious result of 
interpolation that was employed to make the spatially 
distributed data from a network of point observed 
precipitation data (Kozan et al., 2001). The modeled 
results are not as smooth as the interpolated field. Even 
being the modeled outputs able to preserve the spatial 
pattern in terms of separation of rainy zones and 
non-rainy zones, they include a higher degree of spatial 
heterogeneity. Definitely, this is the effect of the random 
generators. The rainfall magnitudes at a particular cell, 
however, do not remain exactly same in the repeated 
trials, as they depend upon the generators based on the 
cascade of multiplication of the random numbers inside 
the model despite their superb capability of preserving 
the same spatial patterns. We argue this as a beneficial 
point of the suggested method to infer the probability of 
uncertainty in rainfall phenomenon, which might help to 
understand the consequences of rainfall uncertainty in 
rainfall-runoff modeling. 
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